If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+8y=384
We move all terms to the left:
2y^2+8y-(384)=0
a = 2; b = 8; c = -384;
Δ = b2-4ac
Δ = 82-4·2·(-384)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-56}{2*2}=\frac{-64}{4} =-16 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+56}{2*2}=\frac{48}{4} =12 $
| 2x+8=7x+22 | | -2(7x-5)+2=14x+12 | | -11x+12=10x-13 | | 5x+2=0.5(3x+32) | | 6n-1=4n+2=5n+9 | | 0.125^x=2 | | 3^10x=5^x+7 | | -8(xx2)+2=58 | | 4x+15x+12+3=4x-2x-2 | | 4.13*10^-8=x | | 6x-9-9x=5-7x+2 | | 4x+4=2(x-6) | | 3x-7/6=21 | | 3x-7/6=20 | | 2x-4X2=5 | | 2x4x2=5 | | -8+4(c-9)-5+6c=2c | | (2-5x)=13 | | 72h=576 | | 187=(2x+3)(x+4) | | x=-0.8x^2+3.2x+6 | | 5/6=-30/x | | 7x+8=5x+32=180 | | 4x+11+6x+1=180 | | 3+5a=23 | | 4/3+z=2/3 | | 63=6u+3u | | 1.25(36-y)+.5y=30 | | 4-5x=3x+11 | | 6x-1+4x+5=180 | | 6((x+1/8)-(2x-3/16))=3((3/4x-1/4)-(3/8(3x-2)) | | 4=4x+10) |